Ventajas de nuestra formación
Acceso al curso las 24 hs. Todos los días de la semana
Contenidos didácticos de calidad
Calendario flexible
Profesores especializados
Curso acreditado por FUNDAE
Aula virtual accesible para PCs, notebook, tablet y smartphone
Opción a disponer de asistencia de profesor o sólo acceso a contenidos (autoestudio)
Nos ocupamos de toda la gestión de su bonificación
Diploma acreditativo de CIBERAULA
Calendario: Flexible.
Fecha disponible: Inmediata.
Porcentaje de Bonificación: 100%
Diploma acreditativo emitido por FUNDAE.
Certificado acreditativo para concursos y oposiciones.
Temario Personalizado.
¿Por qué es beneficioso para un profesional realizar un curso sobre la API Gemini de Google con Python?
En un mundo donde la tecnología avanza a pasos agigantados, comprender y aplicar la Inteligencia Artificial (IA) se ha convertido en un requisito indispensable. Un curso enfocado en la API Gemini de Google con Python equipa a los profesionales con habilidades cruciales para navegar y liderar en la innovación tecnológica. Aprender a manipular esta potente API no solo amplía las capacidades de desarrollo de software, sino que también abre puertas a la creación de soluciones IA avanzadas que pueden generar texto e imágenes, potenciando la creatividad y eficiencia en una amplia gama de industrias.
Leer más
En un mundo donde la tecnología avanza a pasos agigantados, comprender y aplicar la Inteligencia Artificial (IA) se ha convertido en un requisito indispensable. Un curso enfocado en la API Gemini de Google con Python equipa a los profesionales con habilidades cruciales para navegar y liderar en la innovación tecnológica. Aprender a manipular esta potente API no solo amplía las capacidades de desarrollo de software, sino que también abre puertas a la creación de soluciones IA avanzadas que pueden generar texto e imágenes, potenciando la creatividad y eficiencia en una amplia gama de industrias.
Adicionalmente, la demanda de profesionales capaces de integrar tecnologías de IA en aplicaciones reales está en aumento. Este curso no solo prepara a los participantes para entender profundamente la API Gemini, sino también para aplicarla en contextos prácticos, desde el desarrollo de aplicaciones hasta la innovación en productos. Además, cubre aspectos esenciales como la configuración del entorno de desarrollo, la ingeniería de prompts y la creación de interfaces, preparando a los alumnos para enfrentar y resolver desafíos técnicos con confianza. Estas competencias son altamente valoradas en el mercado laboral, mejorando significativamente las oportunidades de empleo y la capacidad para innovar.
El curso está diseñado para desarrolladores, científicos de datos, y entusiastas de la tecnología interesados en dominar la API Gemini de Google con Python. Desde la configuración inicial en Jupyter y Google Colab hasta la creación de aplicaciones web interactivas con Streamlit, te llevaremos a través de la ingeniería de prompts, programación avanzada en Python, y la construcción de interfaces front-end. Únete a nosotros para explorar los modelos multimodales de Gemini y cómo generar texto e imágenes, todo mientras construyes proyectos prácticos y te unes a nuestra comunidad en línea. |
La duración del curso de API Gemini de Google con Python es de 50 horas,
acreditadas en el Diploma del mismo. Fecha de inicio: Se puede determinar libremente, teniendo en cuenta que en cursos bonificados de formación contínua debe notificarse a FUNDAE con al menos 3 días naturales de antelación a la misma. |
Este curso puede ser bonificado al 100% para la empresa receptora, incluso aunque esta tenga un porcentaje de copago en razón de su número de empleados en plantilla. El coste de la formación se recuperará
mediante descuento en el pago de los seguros sociales. |
Este descuento será aplicable libremente en cualquier mes del año posterior a la fecha en que haya finalizado la formación. Podrán bonificarse las matrículas de aquellos alumnos que realicen al menos el
75% del curso con éxito. |
EN CURSOS ONLINE Teleformación: En esta modalidad todo el curso se realiza a través de internet, con acceso las 24 hs. todos los días de la semana y plazo máximo de seis meses. No hay actividades como clases a las que el alumno deba asistir en horarios y fechas programados. Aula virtual: En esta modalidad la formación se imparte mediante clases en directo a través de internet, es decir clases tele-presenciales, que se llevarán a cabo a través de ZOOM, Skype u otra herramienta a convenir. Modalidad MIXTA: Combinación de las dos modalidades anteriores. Los trabajadores asisten a clases en directo (por ejemplo una a la semana) y entre clases disponen de material para avanzar en el curso en la plataforma. Es la más completa para grupos de trabajadores que realizan un mismo curso. EN CURSOS PRESENCIALES o SEMI - PRESENCIALES En esta modalidad los trabajadores realizan el curso asistiendo físicamente a un aula en la que se imparte la formación. Puede ser complementada igualmente con acceso a una plataforma online entre clases. Para esta modalidad se requiere una consulta previa de disponibilidad en la ciudad donde se desee llevar a cabo. |
NOTA:
Trabajamos con la metodología de curso personalizado, creada por Ciberaula en 1997. Usted puede solicitar un curso a la medida de sus objetivos, que combine lecciones de
2 o más cursos en un plan de formación a su medida. Si este es su caso consúltenos, esta metodología ofrece un aprovechamiento máximo de la formación en los cursos bonificados para trabajadores.
El
temario predefinido del curso online de API Gemini de Google con Python es el siguiente:
1 Introducción
1.1 Cómo aprovechar al máximo el curso
1.2 IDE de Python para este curso
1.3 Configuración del entorno: Jupyter Notebook
1.4 Configuración del entorno: Google Colab
1.5 Recursos del curso
2 Profundice en la API de Google Gemini PRO Parte 1
2.1 Obtener una clave API de Gemini
2.2 Prueba para obtener una clave API de Gemini
2.3 Instalación del SDK de Python para la API Gemini Pro y autenticación en Gemini
2.4 Prueba para instalar el SDK de Python
3 Profundice en la API de Google Gemini PRO Parte 2
3.1 Modelos multimodales Gemini: Nano, Pro y Ultra
3.2 Cuestionario para modelos Gemini
3.3 Google AI Studio: indicaciones de forma libre con Gemini Pro Vision
3.4 Google AI Studio: uso de variables y parámetros en el mensaje
3.5 Generar texto a partir de entradas de texto: Gemini Pro
4 Profundice en la API de Google Gemini PRO Parte 3
4.1 Respuestas del modelo de transmisión
4.2 Prueba para generar texto a partir de entradas de texto
4.3 Generación de texto a partir de imágenes y entradas de texto: Gemini PRO Vision
4.4 Parámetros de generación de API de Gemini: controlar cómo el modelo genera respuestas
5 Profundice en la API de Google Gemini PRO Parte 4
5.1 Parámetros de generación de API Gemini explicados
5.2 Cuestionario sobre los parámetros de generación de API de Gemini
5.3 Construyendo una conversación de chat
5.4 Prueba para entablar una conversación de chat
5.5 Proyecto: Creación de un agente conversacional utilizando Gemini Pro
6 Jupyter AI Parte 1
6.1 Jupyter AI
6.2 Versión de Python
6.3 Introducción a Jupyter AI y otros compañeros de codificación
6.4 Instalación de Jupyter AI
6.5 Usando Jupyter AI en JupyterLab
7 Jupyter AI Parte 2
7.2 Configuración de Jupyter AI en Jupyter Notebook
7.3 Usando Jupyter AI en Jupyter Notebook
7.4 Uso de la interpolación para casos de uso más avanzados
7.5 Uso de Jupyter AI con otros proveedores y modelos
8 Proyecto: Hablando con una imagen
8.1 Requisitos del proyecto
8.2 Construyendo la aplicación
8.3 Probar la aplicación
8.4 Streamlit: transforme sus portátiles Jupyter en aplicaciones web interactivas
8.5 Creando el diseño de la aplicación web con Streamlit
8.6 Guardar y mostrar el historial utilizando el estado de sesión Streamlit
9 Ingeniería de Prompt para API de Gemini Parte 1
9.1 Introducción a la ingeniería rápida
9.2 Táctica n.° 1: Coloque las instrucciones claramente con delimitadores
9.3 Táctica n.° 2: proporcione instrucciones detalladas sobre el contexto, el resultado o la duración
9.4 Táctica n.º 3: especificar el formato de respuesta
10 Ingeniería de Prompt para API de Gemini Parte 2
10.1 Táctica n.º 4: few shot prompting
10.2 Táctica n.º 5: especificar los pasos necesarios para completar una tarea
10.3 Táctica n.º 6: Dar tiempo a los modelos para "pensar" 10.5 Otras tácticas para provocar y evitar mejor las alucinaciones
10.6 Resumen de ingeniería de prompts
11 Programación en Python Parte 1
11.1 While y continue
11.2 Declaraciones while y break
11.3 Corte de listas e iteración
11.4 Comprensión de listas - Parte 1
11.5 Comprensión de listas - Parte 2
12 Programación en Python Parte 2
12.1 Trabajar con diccionarios
12.2 Serialización de datos JSON
12.3 Deserialización de datos JSON
12.4 Asignación: JSON y solicitudes/API REST
12.5 Respuesta de la tarea: JSON y solicitudes/API REST
13 Creando interfaces front-end para aplicaciones Parte 1
13.1 Introducción a Streamlit
13.2 Conceptos principales de Streamlit
13.3 Visualización de datos en la pantalla: st.write() y Magic
14 Creando interfaces front-end para aplicaciones Parte 2
14.1 Widgets, Parte 1: text_input, number_input, botón
14.2 Widgets, Parte 2: casilla de verificación, radio, seleccionar
14.3 Widgets, Parte 3: control deslizante, file_uploader, camera_input, imagen
15 Creando interfaces front-end para aplicaciones Parte 3
15.1 Diseño: barra lateral
15.2 Diseño: columnas
15.3 Diseño: Expansor
15.4 Mostrar una barra de progreso
15.5 Estado de sesión
15.6 Devoluciones de llamada
Publicado el 11 de agosto del 2024 Por Jasmin Fasquelle Seguridad y mejores prácticas al usar la API de Inteligencia Artificial de Google Gemini con Python La API de Inteligencia Artificial de Google Gemini es una poderosa herramienta que permite a los desarrolladores integrar funcionalidades avanzadas de IA en sus aplicaciones. Al usarla con Python, es crucial adoptar prácticas de seguridad que protejan los datos y optimicen el rendimiento de las aplicaciones. Para empezar, asegúrate de utilizar claves API seguras y rotarlas periódicamente. Es importante también implementar autenticación adecuada y limitar el acceso a los recursos para evitar usos no autorizados. Otra práctica recomendada es utilizar conexiones HTTPS para garantizar que los datos transferidos entre tu aplicación y la API estén cifrados. Esto ayuda a proteger la información sensible contra posibles ataques de intermediarios. Además, es recomendable utilizar entornos virtuales en Python para aislar las dependencias y evitar conflictos de versiones, lo que facilita el mantenimiento y la seguridad de la aplicación. Por último, al desarrollar con la API de Google Gemini, es esencial manejar adecuadamente los errores y las excepciones. Implementa mecanismos de registro y monitoreo para detectar y responder a problemas potenciales en tiempo real. Mantén tu entorno de desarrollo y producción actualizados con las últimas versiones de Python y las bibliotecas de terceros, para minimizar vulnerabilidades conocidas. Al seguir estas mejores prácticas, puedes aprovechar al máximo las capacidades de IA de Google Gemini mientras mantienes una aplicación segura y eficiente. |
---|
Publicado el 14 de julio del 2024 Por Jasmin Fasquelle Casos de uso avanzados de la API de la IA de Gemini Google en diferentes industrias La API de la IA de Gemini de Google ha revolucionado diversas industrias al ofrecer soluciones avanzadas que potencian la innovación y eficiencia. En el sector de salud, esta API permite a las organizaciones analizar grandes volúmenes de datos médicos en tiempo real, mejorando los diagnósticos y tratamientos personalizados. Por otro lado, en la industria de finanzas, se utiliza para desarrollar algoritmos de trading avanzados que predicen tendencias del mercado con una precisión sin precedentes, optimizando así las estrategias de inversión. Además, la inteligencia artificial de Gemini está impulsando la transformación en el ámbito de logística y transporte. Las empresas pueden utilizar esta API para optimizar rutas, reducir costos operativos y mejorar la gestión de inventarios mediante análisis predictivos. En el sector del marketing digital, la API permite a las marcas personalizar campañas publicitarias en función del comportamiento del consumidor, incrementando significativamente el retorno de inversión. Por último, en la manufactura y producción, la API de Gemini se emplea para implementar sistemas de mantenimiento predictivo y automatización avanzada, lo que resulta en una mayor eficiencia y reducción de costos. Estas capacidades hacen que la API de la IA de Gemini de Google sea una herramienta indispensable para cualquier industria que busque mantenerse a la vanguardia tecnológica. |
---|
Publicado el 10 de junio del 2024 Por Jasmin Fasquelle Tutorial de resolución de problemas comunes al usar la API Gemini La API Gemini es una herramienta poderosa que facilita la integración de datos entre aplicaciones, pero como cualquier tecnología, no está exenta de problemas comunes. En este tutorial, abordaremos cómo solucionar algunos de los problemas más frecuentes que los desarrolladores enfrentan. Si encuentras que tu autenticación de API falla, asegúrate de verificar que las claves y los tokens sean correctos y que no hayan expirado. Otro problema común es la latencia en las respuestas; en estos casos, es recomendable revisar los límites de tasa y optimizar las consultas para reducir el tiempo de respuesta. Además, uno de los errores habituales al usar la API Gemini es recibir respuestas de error, como 404 no encontrado o 500 error interno del servidor. Para solucionar estos problemas, primero verifica que la URL de la solicitud sea correcta y que el endpoint esté activo. Si el problema persiste, consulta la documentación oficial de la API para asegurarte de que estás utilizando los parámetros adecuados. También es útil habilitar el registro de errores en tu aplicación para identificar patrones o errores recurrentes. Finalmente, si experimentas problemas con la integración de datos, como datos incompletos o incorrectos, asegúrate de que estás utilizando los métodos de API correctos y que los datos enviados cumplen con el formato requerido. Revisa las políticas de rate limiting para evitar que tus solicitudes sean bloqueadas. Siguiendo estos consejos y utilizando las herramientas de depuración proporcionadas, podrás resolver eficientemente los problemas comunes al usar la API Gemini. |
---|
Publicado el 12 de mayo del 2024 Por Jasmin Fasquelle Creación de una Aplicación de Muestra con la API Gemini y Python Crear una aplicación con la API Gemini y Python es una excelente manera de aprovechar el poder de esta plataforma en tus proyectos. Para empezar, necesitas instalar la biblioteca Gemini en tu entorno de Python. Una vez instalada, puedes conectar tu aplicación a la API Gemini utilizando las credenciales proporcionadas por la plataforma. Este proceso es fundamental para garantizar que tu aplicación pueda interactuar correctamente con los servicios de Gemini. Una vez que tu aplicación está conectada a la API Gemini, puedes empezar a desarrollar funcionalidades específicas. Por ejemplo, puedes crear una función para obtener datos de mercado en tiempo real. Utilizando las llamadas adecuadas a la API, tu aplicación puede recuperar y mostrar estos datos de manera eficiente. La documentación de Gemini es muy útil para entender cómo hacer estas integraciones. Además, con Python, puedes utilizar bibliotecas adicionales como Pandas para procesar y analizar los datos obtenidos. Finalmente, es importante probar tu aplicación para asegurar que todas las funciones implementadas funcionan correctamente. El uso de pruebas unitarias en Python te permitirá verificar que cada componente de tu aplicación interactúa correctamente con la API Gemini. Además, puedes implementar manejadores de errores para gestionar situaciones en las que la API no responda como se espera. De esta manera, tu aplicación será robusta y confiable, aprovechando al máximo las capacidades de Gemini y Python. |
---|
Publicado el 07 de abril del 2024 Por Mario Madrid Introducción a la API Gemini de Google y Python En la constante evolución del desarrollo de software, Google ha lanzado una herramienta poderosa conocida como la API Gemini. Esta API, diseñada para integrarse perfectamente con Python, ofrece a los desarrolladores una manera eficiente de manejar datos y automatizar tareas complejas. La flexibilidad de Python, combinada con las capacidades robustas de la API Gemini, permite a los usuarios crear aplicaciones más inteligentes y escalables. La integración de la API Gemini con Python es relativamente sencilla, lo que facilita a los programadores de todos los niveles aprovechar sus funciones avanzadas. Desde la manipulación de grandes volúmenes de datos hasta la implementación de algoritmos de aprendizaje automático, la API Gemini brinda una plataforma potente para realizar operaciones complejas de manera más accesible y eficiente. Para comenzar con la API Gemini de Google, los desarrolladores deben familiarizarse con su documentación oficial y configurar adecuadamente su entorno de desarrollo en Python. Una vez establecido, se pueden explorar sus múltiples funcionalidades para mejorar significativamente la entrega de soluciones de software, haciendo uso de los últimos avances en tecnología y análisis de datos ofrecidos por Google. |
---|
Novedades del Curso API Gemini de Google con Python
Nuestra Sede